
“Improving Performance in Keyword Search by
Supporting Search as-you-type”

Mr. Datta M. Ningole ME (CSE), Prof. Vijay B. Patil

Department of Computer Science and Engineering
MIT College of Engineering, Aurangabad Maharashtra

Abstract: Now a day, data become an important factor in our
day to day life. As volume of data increases, searching data
has become a tedious searching process. Search is one of the
most basic and important tool which are used in most of
application. Most of search engines provide a feature known
as “search as-you-type”. This feature allows you to get answer
on fly as user types a query character by character. In our
paper, we studied exact and fuzzy search on single and multi-
keyword. We focus on how “search as-you-type” feature are
work on backend relational database. The implementation of
“search as-you-type” includes many challenges that include
security issue, application compatibility in all platforms and
response time of application. To increase overall performance
of searching we will uses indexes in tables. Lastly we have
tested our application on large and real time data with
millions of records that shows far better good results.

Keywords— Exact Search, Fuzzy Search, Like and UDF
methods, Gram based method, Incremental Computation
method, Neighborhood Generation method, Inverted table
method.

I. INTRODUCTION
More information systems currently improved the user
search experiences by providing instant feedback as the
users verbalize search query. Frequently search engine,
online search forms support sedan completion which are
shows recommended queries or even answers on fly as the
user types in the keyword query character by the character.
Since instance consider Web search interface at the Netflix
which tolerates the user to search for the movie
information. Whether the user types in the partial query
mad system shows movies with the title matching this
keyword as the prefix such as Madagascar and Mad Men
The instant feedback helps the user not only in the
formulating the query then also in understanding
underlying data. This is type of the search generally called
search as you type or type onward search. Therefore
additional search systems store their information in the
Backend interpersonal DBMS question arises naturally how
to the support search as you type on data residing in the
DBMS. Some databases such as the Oracle and SQL server
support prefix search .We study new method that can be
used in all databases. Once the methodology is to the
developed the separate application layer on to the database
to construct indexes and the implement algorithm is for the
answering queries. However this approach has the
advantage of the achieving the high performance it is main
drawbacks are duplicating data and the indexes resulting in
the additional hardware cost. The alternative methodologies

are to the use database extenders such as the DB2
Extenders Informix Data Blades, Microsoft SQL Servers
and Oracle Cartridges which is allow developers to the
implement novel functionalities to DBMS. In this type of
approach isn’t feasible for databases that don’t provide
such extender interface such as MySQL database. Another
approach is to use standard SQL techniques which are also
portable to other databases. We compare this “Standard
SQL” technique with our proposed technique for exact and
fuzzy search.
Organization of the Paper:
The rest of the paper is organized as follows. Section II
represents the related work. Section III represents the
system model with terminology and recalls the some
background concepts. Section IV represents the proposed
work for exact and fuzzy search related to single and multi-
keyword query. Section V illustrates the performance
evaluation of the proposed algorithm. Section VI represents
the performance analysis of the proposed work. Section VII
states our conclusion and possible extensions for a future
work.

II. RELATED WORK

In particular, there are two types of search which is mostly
observed, namely multikeyword search and fuzzy search.
In multi-keyword search techniques, a user types in query
containing multiple keywords, and find tuples that are
similar to these keywords and the location of keywords. For
example, if a user types in “Database System” to find out a
book by “Mr. S.B.Navathe” with a title including
“Database” and “System” with irrespective of the locations.
In fuzzy search, minor differences may be present between
query keyword and actual results. For example, if a user
types in “Navthe” despite the word “Navathe”, then this
type of search techniques are useful. Depending on these
search techniques, multiple methods have been discussed
later in the paper.
In related work we studied about previous approach used to
support “Search as-you-type’. This includes application
layer based approach[1], Database extender, “Using
standard SQL” and “BANKS”.
2.1 Application Layer
Many search engines and online search forms are support
to auto completion. It shows suggested queries or even
answers “search as you type” as a user types in a keyword
query. In an existing systems are not specially designed for
keyword queries, it become more difficult to support
search-as-you-type. SQL meet the high performance

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4866

requirement to get a "search as you type " search
interface[1]. To support search-as-you-type requires
multiple join operations, which could be rather expensive
to execute by the query engine.
2.2 Database Extender
Another approach is by using database extenders, such as
Informix, DB2 Extenders, Microsoft SQL Server (CLR)
integration, and Oracle Cartridges. It allows developers to
add new functionalities to a DBMS. This approach is not
feasible for databases which do not provide such an
extender interface. MySQL is not providing database
extender so this it is not useful for MySQL. Since it needs
to utilize proprietary interfaces provided by database
vendors, a solution for one database is not be portable to
others. In addition, an extender-based solution, especially
those developed in C/C++, could cause reliability and
security problems to database engines.
2.3 Use “Standard SQL”
The third method is to use SQL[2]. The SQL-based method
is more compatible since it is using the standard SQL. Even
if DBMS systems do not provide the search-as-you-type
extension feature, the SQL-based method can also be used.
Thus, the SQL-based method is more portable to a different
platform than the first two methods.
2.4”BANKS”
BANKS is Keyword Searching and Browsing in Database
using BANKS [3]. BANKS allow user with no knowledge
of database system or schema to query and browse
relational database with ease. It reduces the effort involved
in publishing relational data on web and making it
searchable. BANKS model the database as directed graph
and table as nodes in the graph .Relationship between these
tables are used as edges between this nodes. BANK is not
feasible for large database.

III. SYSTEM MODEL
We will first plan the problem of search-as-you-type in
database management system and then we will discuss
different ways to support search-as-you-type.

3.1 Problem Formulation
Let T be a relational table with attributes A1;A2; . . .;An.
Let {r1; r2; . . . ; rn} be the collection of records in T, and
ri[Aj] denote the content of record ri in attribute Aj. Let W
be the set of tokenized keywords in R.
3.1.1 Search-as-You-Type for Single-keyword Queries
Exact Search: As a user types in a single partial keyword w
character by character as prefix, search-as-you-type finds
the records that contain keywords with a prefix w. For
example, consider the data in Table 1, A1 = title, A2 =
authors, A3 = booktitle, and A4 = year. R ={r1; . . . ; r10}.
r3[booktitle] = ‘‘sigmod’’. W ={privacy; sigmod; sigir; . .
.}If a user types in a query “sig” it get records of rows
having id r3, r6, and r9. In particular, r3 contains a keyword
“sigmod” with a prefix “sig”. "sig" is prefix of keyword
"sigmod".
Fuzzy Search: As a user types in a single partial keyword
w, fuzzy search finds records with keywords similar to the
query keyword. In Table 1, assuming a user types in a
query “corel,” It returns record r7 because it contains a
keyword “correlation” with a prefix “correl” similar to the
query keyword “corel.” Edit distance method are used to
measure the similarity between strings ed(s1, s2) is known
as the edit distance between two strings s1 and s2. It is the
minimum number of single-character edit operations such
as insertion, deletion, and substitution needed to transform
s1 to s2.

IID Titlel AutAuthors BBookTitle rYear

r1
K-Auto morphism: A General
Framework for Privacy Preserving
Network Publication

Lei Zou, Lei Chen, M. Tamer
O¨ zsu

PVLDB 2009

r2
Privacy-Preserving Singular Value
Decomposition

Shuguo Han, Wee Keong Ng,
Philip S. Yu

ICDE 2009

r3
Privacy Preservation of Aggregates in
Hidden Databases:

Arjun Dasgupta, Nan zhang,
Gautam Das, Surajit

SIGMOD 2009

r4
Privacy-preserving Indexing of
Documents on the Network

Mayank Bawa, Roberto J.
Bayardo, Rakesh Agrawal

VLDBJ 2009

r5
On Anti-Corruption Privacy Preserving
Publication

Yufei Tao, Xiaokui Xiao,
Jiexing Li, Donghui Zhang

ICDE 2008

r6
Preservation of Proximity Privacy in
Publishing Numerical Sensitive

Jiexing Li, Yufei Tao, Xiaokui
Xiao

SIGMOD 2008

r7
Hiding in the Crowd: Privacy
Preservation on Evolving Streams

Feifei Li, Jimeng Sun, Spiros
Papadimitriou,

SIGIR 2007

r8
The boundary between privacy and
utility in data publishing

Vibhor Rastogi,sungho VLDB 2007

r9
Privacy protection in personalized
Search

Xuehua Shen, Bin Tan SIGIR 2007

Table1 .DBLP in “Publication” relational database

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4867

3.1.2)Search-as-You-Type for Multikeyword Queries
Exact Search: Consider a multi-keyword query Q with m
keywords w1,w2, . . . , Wm, as the user is completing the
last keyword Wm, it consider Wm as a partial keyword and
other keywords as complete keywords. As a user types in
query Q, search-as-you-type it finds the records that
contain the complete keywords and a keyword with a prefix
Wm. if a user types in a query “privacysig” search-as-you-
type it get records having row id r3, r6, and r9. Particularly
r3 contains the complete keyword “privacy” and a keyword
“sigmod” with a prefix “sig”.
 Fuzzy Search: Fuzzy search the records that contain
keywords similar to the complete keywords and a keyword
with a prefix similar to partial keyword Wm. Suppose edit-
distance threshold t= 1 as a user types in a query
“privicycorel” fuzzy search it returns record r7 since it
contains a keyword “privacy” similar to the complete
keyword “privicy” and prefix “correl” contain in keyword
“correlation” which look similar to “corel" as the partial
keyword.

IV. PROPOSED WORK
System proposes two types of methods to use SQL to
support search-as-you-type for single-keyword queries.

4.1 No-Index Methods
An appropriate way to support search-as-you-type is to
issue an SQL query that scans each record and verifies
whether the record is an answer to the query. It consists of
two ways to do the checking: 1) Calling User-Defined
Functions. It can add functions into databases to verify
whether a record contains the query keyword; and 2) Using
the LIKE predicate. LIKE predicate performs string
matching. LIKE predicate are used to check whether a
record contains the query keyword. This method introduces
false positivity, e.g., keyword “publication” contains the
query string “ic,” but the keyword does not have the query
string “ic” as a prefix. It can remove these false positives
by calling UDFs.
Proposed system based on auxiliary tables to build as index
structures to provide a prefix search. Some databases like
Oracle and SQL server already support prefix search, and it
could use this feature to do prefix search. But not all
databases provide prefix search. For this reason, it develops
a new method that can be used in all databases.
Inverted-index table: Given a table T, assign unique ids to
the keywords in table T, following their alphabetical order.
It creates an inverted-index table IT with records in the
form <kid; rid>. To find records with the keyword it can
use the inverted-index table.
Prefix table:Given a table T, for all prefixes of keywords in
the table, prefix table PT developed with records in the
form <p; lkid; ukid> p- prefix of a keyword, lkid - smallest
id of those keywords in the table T having p as a prefix, and
ukid- the largest id of those keywords having p as a prefix.
It is observed that a complete word with p as a prefix must
have an ID in the keyword range {lkid; ukid} and every
complete word in the table T with an ID in this keyword
range must have a prefix p. Thus, given a prefix keyword
w, system can use the prefix table to find the range of
keywords with the prefix.

a) Keyword Table

(b) Inverted Index Table

(c) Prefix Table

Table 2. The Inverted-Index Table and Prefix Table

For example, as shown in table 2 this illustrates the
inverted-index table and the prefix table for the records.
The inverted index table has a tuple <k8; r3> keyword k8
(“sigmod”) is present in record r3. The prefix table has a
tuple <‘‘sig’’,k7; k8> keyword k7 (“sigir”) is the minimal
id of keywords with a prefix “sig,” and keyword k8
(“sigmod”) is the maximal id of keywords with a prefix
“sig.” the range of ids of keywords with a prefix “sig” is
[k7; k8].We use the following SQL to answer the prefix-
search query w:

Prefix lkid ukid

Ic k1 k2

P k3 k6

pr k3 k4

pri k4 K4

pu k5 k5

pv k6 K6

Sig k6 K8

kid Keyword
 k1 Icde

K2 Icdt
K3 Preserving

K4 Privacy
K5 Publishing

K6 Sigmoid
k7 Sigir

k8 Sigmod

kid Rid

K2 r10

K5 r6

K5 r8

K5 r10

k6 r1
K7 r9

k8 r3

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4868

For example, assuming a user types in a partial query “sig”
on table (Table 1), it issue the followingSQL:

It returns records r3, r6, and r9. The SQL query first finds
the keyword range [k7; k8] in prefix table. After that it
finds the records containing a keyword with ID in [k7; k8]
using the inverted-index table. To get the answer efficiently
from the SQL query, we develop built-in indexes on
attributes prefix, kid, and rid. The SQL first use the index
to find the keyword range on prefix, and then compute the
answers using the indexes on kid and rid.

FUZZY SEARCH FOR SINGLE KEYWORD
4.2.1 No-Index Methods
The LIKE predicate does not support fuzzy search, it
cannot use the LIKE-based method. Proposed system can
use UDFs to support fuzzy search. it use a UDF PED(w; s)
that takes a keyword w and a string s as two parameters,
and returns the minimal edit distance between w and the
prefixes of keywords in s. PED(‘‘pvb’’; r10[title])=
PED(‘‘pvb’’; ‘‘privacy in database publishing’’) = 1 as r10
contains a prefix “pub” with edit distance of 1 to the query.
Index-Based Methods
Proposed system approaches to use the inverted-index table
and prefix table to support fuzzy search-as-you-type. Given
a partial keyword w, compute its answers in two steps. First
compute its similar prefixes from the prefix table PT, and
get the keyword ranges of these similar prefixes. Then it
computes the answers based on these ranges using the
inverted-index table IT.
4.2.1.1 Using UDF
Given a keyword w, system can use a UDF to find its
similar prefixes from the prefix table PT .It issue an SQL
query that scans each prefix in PT and calls the UDF to
check if the prefix is similar to w. It issues the following
SQL query to answer the prefix-search query w

System can use length filtering to improve the
performance, by adding the following clause to the where
clause: “LENGTH (PT: prefix) <= LENGTH (w) +r AND
LENGTH (PT: prefix) >= LENGTH (w)-r”.
4.2.1.2 Gram-Based Method
There are many q-gram-based methods to support
approximate string search[6]. Given a string s, its q-grams
are its substrings with length q. Let Gq(s) denote the set of
its q-grams and |Gq(s)j| denote the size of Gq(s). For
example, for “pvldb” and “vldb,” it has |G2(pvldb)= {pv,
vl, ld, db} and G2(vldb)= {vl; ld; db}. Strings s1 and s2

have an edit distance within threshold t if where |s1| and |s2|
are the lengths of string s1 and s2, respectively. This
technique is called count filtering. This method may
contain false positives to avoid it we use UDFs to verify the
candidates to get the similar prefixes of w. Fig. 1 illustrate
how to use the gram-based method to answer a query. It
can further improve the query performance by using
additional filtering techniques.

Fig 1 using the q gram table and the neighborhood generation table to

support fuzzy search.

It could be expensive to use “GROUP BY” in databases,
and the q-gram-based method is inefficient, especially for
large q-gram tables. Moreover, this method is rather
inefficient for short query keywords, as short keywords
have smaller numbers of q-grams and the method has low
pruning power.
4.2.1.3 Neighborhood-Generation-Based Method
Uk konen proposed a neighborhood-generation-based
method to support approximate string search. Proposed
systems extend this method to use SQL to support fuzzy
search-as-you-type. Given a keyword w, the substrings of
w by deleting i characters are called “i-deletion
neighborhoods” of w. Let Di(w) denote the set of i-deletion
neighborhoods of w and D Dt(w)=Ut

i=0Di (w). For example,
given a string “pvldb,” D0(pvldb) = {pvldb}, and
D1{pvldb} ={vldb; pldb; pvdb, pvlb; pvld}. Suppose t= 1,
eDt (pvldb) = {pvldb; vldb; pldb; pvdb; pvlb; pvld}.
Moreover, there is a good property that given two strings s1
and s2, if ed(s1; s2) <=, eDt (s1) and eDt(s2)!=null as
formalized in Lemma 1. This method is efficient for short
strings. However, it is inefficient for long strings,
especially for large edit-distance thresholds.

SUPPORTING MULTIKEYWORD QUERIES
We propose systematic techniques to support multikeyword
queries.
1) Given a multikeyword query Q with m keywords w1 ;
w2; . . . ; wm, there are two ways to answer it from
scratch.1) Using the “INTERSECT” Operator: first
compute the records for each keyword using the previous
methods, and then use the “INTERSECT” operator to
merge these records for different keywords to compute the
answers.
2) Using Full-text Indexes: Here first use full-text indexes
(e.g., CONTAINS command) to get records matching the
first m 1 complete keywords, and then use proposed
method to find records matching the last prefix keyword.
Finally, we join the results. These two methods cannot use
the pre computed results and may lead to low performance.
To address this problem, we propose an incremental

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4869

computation method.The basic approach for keyword
searching is as shown in following figure 2.

Fig 2 Searching keyword Using SQL

V. PERFORMANCE EVALUATION
This chapter evaluates performance of proposed system and
performance of proposed system is analyzed with various
exact and fuzzy search method on the parameters of Query
time, memory used and number of record fetch. We
implemented the proposed methods on real data sets i.e.
“DBLP”: It included 1.2 million computer sciences.The
size of inverted-index table and prefix table is acceptable,
compared with the data set size. As a keyword may have
many deletion-based neighbors, the size of prefix-deletion
table is rather large.

5.1 Experimental Setup
The system is implemented in Netbean IDE 8.0.2
environment, in which it will use the Netbean IDE 8.0.2
framework. While the front end is in Java the backend i.e.
Database is in SQL Server 2008. This application can be
used as a desktop or window application. The Results are
successfully displayed on window. It examine the overall
query time to return records when it apply exact and fuzzy
search that has multiple methods on “paper” and “author”
tables. System analysis is performed on real data sets. For
now the impact of parameters are evaluated on the basis of
Query Time, Heap memory used and number of record
fetch.
Data Sets: System consists of two real DBLP dataset tables
which provide both exact and fuzzy search result. The first
table is “author” for author’s details and “Paper” for paper
details. “paper” table has column “title”, ”year”,
”conference” and “paper_key”. In second table “author”
table has column “paper_key” and “author_name”.

5.2 Evaluation of Case Studies
In this chapter, the old method “Using Standard SQL”
method which is based on no indexed method are going to
compare with our proposed methods. The performance
factors are query time, max heap memory used and number
of record fetch.

Query time: Query time is the time in between from query
submission to record or data retrieval from database. To get
query time system note down the start time stamp at which
query entered and getting results from query as end time.
By calculating difference between start and end time
system get query time. This query time is used to compare
with “No-Indexed” method i.e. “Standard SQL”.
 Max heap memory: Max heap memory is used as one of
the performance factor for proposed system. It calculate
max heap memory used during data retrieval.
Number of record fetch: The number of record fetch from
table is calculated for exact and fuzzy search in single and
multi-keyword query. Proposed system consists of various
methods which provide a feasible result. It uses this factor
to compare the result.

Case Study 1:
In this case study user gives the query to the system, user
get record from various methods. Here query keyword is
“Public-Private” for single keyword search. First no
indexed method it gives result which contain row id, title,
Author, Book title and Year. Single Keyword:

i) Exact Search
It gives the following result. It is output for No-Index
method.

r105
Enhancing Public-
Private Partnerships
Through SMS

Kristina
Lugo

ANT/MobiWIS 2012

It requires the 2213 millisecond to fetch record from
dataset. Proposed system provides an “Indexed-Based”
which searches a query keyword “Public-Private” as prefix
of word, firstly add into in keyword table. After it adds into
Inverted Index Table .Next step is adding prefix for
“Public-Private” query keyword as “Public” prefix in
Prefix table. In proposed system search is totally depend
upon overall search i.e. prefix search. It gives same result
in 114 Millisecond when search as prefix “Public”.
ii) Fuzzy Search
In fuzzy search consist of “No-Indexed” method which
gives result of fuzzy search for query keyword “Public-
Private”. Proposed system consists of “Indexed Based”
method which contain “UDF”, “Grambased” and “NGB”
i.e. neighborhood generation method. Input is “Public” as
prefix. It gives following result in 1379 millisecond. In
Proposed system consists of “Using UDF” and “gram
Based”. In “Using UDF” it need prefix” Public” to get
result, this results get in only 25 millisecond. Then in
“gram Based” it needs two inputs. First is keyword which
have search “Public-Private” and substring “Public” if
substring is valid then it get result, otherwise it does not
give result. “Gram Based” method provides the results in
1580 millisecond.
2. Multi-keyword
Exact search: In multi keyword consists of exact search and
fuzzy search for multi-keyword. So another keyword used
with “Public-Private” is “Portuguese”. Multi keyword exact
search method search the records contain with “Public-
Private” and “Portuguese” keyword. It fetches 13 records. 1
record for “Public-Private” and 12 results for “Portuguese”.
Query time required to fetch exact search result is 3931.

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4870

Fuzzy search: Multi keyword fuzzy search method search
the records contain with “Pulic” and “Potu” keyword. It
gives the 2 records which contain “Public” and “Portu”
keywords. It gives result with respect to similar match
keywords. It fetches result in 40 milliseconds which is far
less as compared to exact search.
3. First-n- query
This proposed method limits the results which are fetched
from tables. It provides filtering technique to exact and
fuzzy search. It needs to provide a limit. The limit restricts
the result to show the restricted or particular number of
results.
Exact Search: In first n query consists of exact search and
fuzzy search for multi-keyword. So another keyword used
with “Public-Private” is “Portuguese”. First n query
supports multi keyword exact search method search the
records contain with “Public-Private” and “Portuguese”
keyword. It fetches the records which is less than or equal
to that limit i.e. 3. It shows only top 3 results. It’s required
query time is 2887 millisecond. Heap memory uses up to
42 MB.
Fuzzy Search: Top n query supports multi keyword fuzzy
search method that searches the records contain with
“Pulic” and “Potu” keyword. It gives the 2 records which
contain “Public” and “Portu” keywords. It gives result with
respect to similar match keywords. It fetches result in 37
milliseconds which is far less as compared to exact search.
Case Study 2:
In case study second, query keyword as single word is
“Satellites” and other word used with this keyword is
“quasi-birth-and-death”. “Satellites” and “quasi-birth-and-
death” are used with in multi keyword search.
1. Single keyword
i) Exact Search: It return 4 record having same title “Highly
Efficient Exploration of Large Design Spaces: Fractionated
Satellites as an Example of Adaptable Systems” but with
different author name. Paper may have multiple authors
Query time:” No-Index method” requires the 2259
millisecond to fetch record from dataset. Proposed system
provides an “Indexed-Based” which searches a query
keyword “Satellites” as prefix of word. “Satel” prefix in
Prefix table. In proposed system search is totally depend
upon overall search i.e. prefix search. It gives same result
in 25 Millisecond when search as prefix “Satel”.
Max Heap memory used:” No-Index method” fetches
maximum number of record from dataset. So it uses the
max heap memory are 64 MB. Proposed system provides
an “Indexed-Based” which searches a query keyword
“Satellites” as prefix of word. “Satel” prefix in Prefix table.
It uses 40 MB. It uses minimum heap memory as compared
to” No-Index method” .
Number of record:” No-Index method” fetches maximum
number of record from dataset. Here it fetches 4 records.
Proposed system provides an “Indexed-Based” provides
one records.
i) Fuzzy Search
In fuzzy search consist of “No-Indexed” method which
gives result of fuzzy search for query keyword “Satellites”.
“No-Indexed” method needs prefix “Satel” used for query
keyword “Satellites”.

Query time : ” No-Index method” requires the 1421
millisecond to fetch record from dataset. Proposed system
provides an “Indexed-Based” using “UDF” searches a
query keyword “Satellites” as prefix of word. “Satel” prefix
in Prefix table. In proposed system search is totally depend
upon overall search i.e. prefix search. It gives same result
in 25 Millisecond when search as prefix “Satel”. Second
proposed method “gram based” takes two inputs. First is
query keyword “Satellites” and second is substring “Satel”.
If substring is valid only then it fetch record from dataset. It
requires 2953 milliseconds.
Max Heap memory used: ” No-Index method” fetches
maximum number of record from dataset. So it uses the
max heap memory are 42 MB. Proposed system provides
an “Indexed-Based” consist “UDF” and “gram based”
method. ”UDF” which searches a query keyword
“Satellites” as prefix of word “Satel” prefix in Prefix table.
It uses 25 MB. “Gram based ”method uses 41 MB.
Number of record: ” No-Index method” fetches maximum
number of record from dataset. Here it fetches 4 records.
Proposed system provides an “Indexed-Based” methods
such as “UDF” and “gram based ” provides one record.
2. Multi-keyword
1. Exact search
In multi keyword consists of exact search and fuzzy search
for multi-keyword. So another keyword used with
“Satellites” is “quasi-birth-and-death”.
Query time: It requires 4444 milliseconds. As compared to
single keyword, multi-keyword exact search require more
query time.
Max Heap memory used: Multi-keyword exact search uses
49 MB.
Number of record: It fetches 6 records. 4 record for
“Satellites” and 2 results for “quasi-birth-and-death”.
2. Fuzzy search
Multi keyword fuzzy search method search the records
contain with “Sael” and “quasi-bith” keyword.
Query time: It requires 50 milliseconds. As compared to
single keyword, multi-keyword fuzzy search require more
query time.
Max Heap memory used: Multi-keyword exact search uses
35 MB.
Number of record: It fetches 2 records. One record for
“Satellites” and one record for “quasi-birth-and-death”.
3.First-n- query
Exact Search : In first n query consists of exact search and
fuzzy search for multi-keyword. So another keyword used
with “Satellites” is “quasi-birth-and-death”. First n query
supports multi keyword exact search method search the
records contain with “Satellites” and “quasi-birth-and-
death” keyword. It fetches the records which is less than or
equal to that limit i.e. 3. It shows only top 3 results. Its
required query is time 4678 millisecond. Heap memory
uses up to 39 MB.
Fuzzy Search : Top n query supports multi keyword fuzzy
search method that searches the records contain with “atel”
and “quasi-birh” keyword. It gives the 2 records which
contain “Satel” and “quasi-birth” keyword. It gives result
with respect to similar match keywords. It fetches result in

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4871

37 milliseconds which is far less as compared to exact
search. It uses heap memory up to 40 MB.

VI. PERFORMANCE ANALYSIS:
Case
Study

Method Search Query
Time

Memory
Used

No. of
record

Case
Study I

No
Indexed
Based

Exact 2213 72 5
Fuzzy 1379 44 5

Indexed
based

Exact 114 43 1
Fuzzy gram 1580 42 1

udf 24 44 1
Case
Study

II

No
Indexed
Based

Exact 2259 64 4
Fuzzy 1421 42 4

Indexed
based

Exact 20 40 1
Fuzzy gram 2923 41 1

udf 25 39 1

Table 3Comparative performance of methods

Overall performance of query time related case study 1 is
shown below.

Fig 3 Query Time Analysis for case study 1

From fig 3 it is concluded that query time required to “No-
Indexed Based” method is more than our proposed
“Indexed Based” method. Overall performance of max
heap memory related case study 1 is shown below.

Fig 4 Heap Memory used for case study 1

From fig 4 it is concluded that max heap memory required
to “No-Indexed Based” method is more than our proposed
“Indexed Based” method. Single exact search in heap
memory is approximately same as to the fuzzy search.
Overall performance of number of record related case study
1 is shown below.

Fig 5 Number record fetches For Case Study 1

From fig 5 it is concluded that number of record fetch
from “No-Indexed Based” method is more than our
proposed “Indexed Based” method. For case study 2 , the
overall performance factor “Query time ” related fuzzy and
exact search for single and Multi-Keyword are shown in
following fig 6.

Fig.6 “Query time” of fuzzy and exact search for single and Multi-

Keyword

The overall performance factor “Heap Memory Used”
related fuzzy and exact search for single and Multi-
Keyword are shown in following fig 7.

Fig 7 “Heap Memory Used” related fuzzy and exact search for single and

Multi-Keyword.
The overall performance factor “Number of record ” related
fuzzy and exact search for single and Multi-Keyword are
shown in following fig 8.

0

20

40

60

80

NoIndex

IndexPrefix

fuzzyIndexUdf

fuzzyIndexGram

Exact

Fuzzy

0

5

10

15
NoIndex

IndexPrefix

fuzzyIndexUdf

fuzzyIndexGram

Exact

0

1000

2000

3000

4000

5000

NoIndex

IndexPrefix

fuzzyIndexUdf

fuzzyIndexGram

Using Like

UsingNGB

0

10

20

30

40

50

60

70

NoIndex

IndexPrefix

fuzzyIndexUdf

fuzzyIndexGram

Exact

Fuzzy

0
500
1000
1500
2000
2500
3000
3500
4000
4500

SingleExact SingleFuzzy MultiKeyword Top N query

NoIndex IndexPrefix fuzzyIndexUdf
fuzzyIndexGram Using Like UsingNGB

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4872

Fig 8 “Number of record” related fuzzy and exact search for single and

Multi-Keyword.

VII CONCLUSION AND FUTURE SCOPE:
After evaluating overall the performance of the “Indexed
based” method with different set of inputs, related outputs
are studied. Then it starts the performance analysis of the
“No-Indexed Based” methodology with the “Indexed
Based” strategy. Through the two scenarios with every
scenario being having different input we analyze the
Performance of both strategies. The overall observation
from the all scenarios proved that the “Indexed Based”
strategy outperforms the “Non-Indexed” in every feature.
Query time of “Indexed Based” is much more less than
“Non-Indexed Based” method. “Number of record” fetched
in “Non-Indexed” method is more as compared to “Indexed
Based” method but it contain more percentage of false
positivity. There are several open problems to support
search-as you- type using SQL. One is how to support
ranking queries efficiently.

REFERENCES
[1] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy Keyword

Search,” Proc. 18th ACM SIGMOD Int’l Conf. World Wide Web
(WWW), pp. 371-380, 2009.

[2] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead Search on
Relational Data: A Tastier Approach,” Proc. 35th ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’09), pp. 695-706, 2009.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword Searching and Browsing in Data Bases Using Banks,”
Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp. 431- 440, 2002.

[4] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate String Joins in a
Data Base (Almost) for Free,” Proc. 27th Int’l Conf. Very Large
Data Bases (VLDB ’01), pp. 491-500, 2001.

[5] J. Jestes, F. Li, Z. Yan, and K. Yi, “Probabilistic String Similarity
Joins,” Proc. Int’l Conf. Management of Data (SIGMOD ’10), pp.
327- 338, 2010.

[6] R.B. Miller, “Response Time in Man-Computer Conversational
Transactions,” Proc. AFIPS ’68: Fall Joint Computer Conf., Part I,
pp. 267-277, 1968.

[7] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy Keyword
Search,” Proc. 18th ACM SIGMOD Int’l Conf. World Wide Web
(WWW), pp. 371-380, 2009.

[8] C. Li, J. Lu, and Y. Lu, “Efficient Merging and Filtering Algorithms
for Approximate String Searches,” Proc. IEEE 24th Int’l Conf. Data
Eng. (ICDE ’08), pp. 257-266, 2008.

[9] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate String Joins in a
Data Base (Almost) for Free,” Proc. 27th Int’l Conf. Very Large
Data Bases (VLDB ’01), pp. 491-500, 2001.

0
1
2
3
4
5
6
7

NoIndex

IndexPrefix

fuzzyIndexUdf

fuzzyIndexGram

Exact

Fuzzy

Datta M. Ningole et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4866-4873

www.ijcsit.com 4873

